These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Agrobacterium plasmids encode structurally and functionally different loci for catabolism of agrocinopine-type opines. Author: Hayman GT, Farrand SK. Journal: Mol Gen Genet; 1990 Sep; 223(3):465-73. PubMed ID: 2270086. Abstract: Agrobacterium tumefaciens strains C58, T37, K827 and J73, A. rhizogenes strains A4 and 15834, and A. radiobacter strain K299 were all susceptible to agrocin 84 and this sensitivity was enhanced in each case by addition of agrocinopines A and B. Analysis of transconjugants showed that sensitivity of strain A4 to agrocin 84 was encoded by pArA4a and not by the rhizogenic plasmid, pRiA4. The acc region of the A. tumefaciens nopaline-type Ti plasmid pTiC58, contained on the recombinant plasmid pTHH206, hybridized strongly to restriction fragments of plasmids from strains T37, K827, J73 and K299. Hybridizing fragment patterns generated with BamHI and EcoRI were identical among the four Ti plasmids while pAtK299 showed restriction fragment length polymorphisms at acc with the two enzymes. At moderate stringency, the pTiC58 acc region hybridized weakly to a single restriction fragment from the Ar plasmid of A. rhizogenes strain A4, but not to pTiBo542, which encodes catabolism of the closely related opines agrocinopines C and D. Plasmid pAtK84b of A. radiobacter strain K84 is induced for conjugal transfer by agrocinopines A and B. However, no hybridization was detected between this plasmid and acc from pTiC58 under conditions of moderate stringency. Like pTiC58, pAtK84b conferred transport of agrocinopines A and B on its host bacteria despite the absence of detectable sequence homology with the pTiC58-derived acc probe. However, unlike pTiC58, pAtK84b failed to confer sensitivity to or uptake of agrocin 84 on its bacterial host. These results indicate that at least four distinguishable systems exist for catabolism of the two agrocinopine opine families with the prototype locus, exemplified by acc from pTiC58, being strongly conserved among nopaline-type Ti plasmids.[Abstract] [Full Text] [Related] [New Search]