These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phospholipase C-δ(1) regulates interleukin-1β and tumor necrosis factor-α mRNA expression.
    Author: Chung E, Jakinovich P, Bae A, Rebecchi M.
    Journal: Exp Cell Res; 2012 Oct 01; 318(16):1987-93. PubMed ID: 22710061.
    Abstract:
    Phospholipase C-δ(1) (PLCδ(1)) is a widely expressed highly active PLC isoform, modulated by Ca(2+) that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLCδ(1) modulated expression of the pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLCδ(1) was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLCδ(1) knockdown enhanced expression IL-1β and tumor necrosis factor-α (TNF-α) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLCδ(1) knock down caused persistently high Nfκb levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLCδ(1) knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1β and TNF-α mRNA's induced by PLCδ(1) knockdown. Our results show that loss of PLCδ(1) enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nfκb pathway. Our findings are consistent with the idea that PLCδ(1) is a suppressor of PKC activity.
    [Abstract] [Full Text] [Related] [New Search]