These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ribosomal protein L35: identification in spinach chloroplasts and isolation of a cDNA clone encoding its cytoplasmic precursor.
    Author: Smooker PM, Choli T, Subramanian AR.
    Journal: Biochemistry; 1990 Oct 16; 29(41):9733-6. PubMed ID: 2271612.
    Abstract:
    We describe the isolation of spinach chloroplast ribosomal protein L35 and characterization of a cDNA clone encoding its cytoplasmic precursor. This protein was only recently identified in ribosomes, but the sequences of four L35 genes have now been reported and confirm its presence in eubacteria, chloroplasts, and cyanelles. Using N-terminal sequence data, oligonucleotides were designed and a cDNA library was screened. The nucleotide sequence of the cDNA clones shows that the spinach L35 protein is encoded as a precursor of 159 residues, comprising a mature protein of 73 residues and a transit peptide of 86 residues. The cleavage site for forming the mature protein is deduced to be Thr-Val-Phe-Ala decreases Ala-Lys-Gly-Tyr. The L35 protein in the photosynthetic organelle of the protozoan Cyanophora paradoxa is encoded in the organelle DNA [Bryant & Stirewalt (1990) FEBS Lett. 259, 273-280]. The corresponding gene has not been found in the chloroplast DNA of a lower plant (liverwort) and two higher plants. Our results demonstrate that the L35 protein in a higher plant (spinach) is encoded in the nucleus. This finding, in light of the endosymbiont hypothesis, suggests an organelle to nucleus transfer of the L35 gene at the evolutionary beginnings of land plants.
    [Abstract] [Full Text] [Related] [New Search]