These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gene transcription and splicing of T-type channels are evolutionarily-conserved strategies for regulating channel expression and gating. Author: Senatore A, Spafford JD. Journal: PLoS One; 2012; 7(6):e37409. PubMed ID: 22719839. Abstract: T-type calcium channels operate within tightly regulated biophysical constraints for supporting rhythmic firing in the brain, heart and secretory organs of invertebrates and vertebrates. The snail T-type gene, LCa(v)3 from Lymnaea stagnalis, possesses alternative, tandem donor splice sites enabling a choice of a large exon 8b (201 aa) or a short exon 25c (9 aa) in cytoplasmic linkers, similar to mammalian homologs. Inclusion of optional 25c exons in the III-IV linker of T-type channels speeds up kinetics and causes hyperpolarizing shifts in both activation and steady-state inactivation of macroscopic currents. The abundant variant lacking exon 25c is the workhorse of embryonic Ca(v)3 channels, whose high density and right-shifted activation and availability curves are expected to increase pace-making and allow the channels to contribute more significantly to cellular excitation in prenatal tissue. Presence of brain-enriched, optional exon 8b conserved with mammalian Ca(v)3.1 and encompassing the proximal half of the I-II linker, imparts a ~50% reduction in total and surface-expressed LCa(v)3 channel protein, which accounts for reduced whole-cell calcium currents of +8b variants in HEK cells. Evolutionarily conserved optional exons in cytoplasmic linkers of Ca(v)3 channels regulate expression (exon 8b) and a battery of biophysical properties (exon 25c) for tuning specialized firing patterns in different tissues and throughout development.[Abstract] [Full Text] [Related] [New Search]