These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Effects of the conversion from native shrub forest to Chinese chestnut plantation on soil carbon and nitrogen pools].
    Author: Shang SY, Li YF, Jiang PK, Zhou GM, Liu J, Wu JS, Lin L.
    Journal: Ying Yong Sheng Tai Xue Bao; 2012 Mar; 23(3):659-65. PubMed ID: 22720608.
    Abstract:
    To investigate the effects of the conversion from native shrub forest (NF) to Chinese chestnut plantation (CP) on the soil carbon (C) and nitrogen (N) pools, soil samples were collected from the adjacent NF and CP in Anji County of Zhejiang Province, with their water-soluble organic C (WSOC), microbial biomass C (MBC), readily oxidizable C (ROC), water-soluble organic N (WSON), and microbial biomass N (MBN) determined. The spectral characteristics of soil organic C were also determined by using nuclear magnetic resonance (NMR) technique. After the conversion from NF to CP, the soil alkalyzable N, available phosphorus, and available potassium contents increased significantly, while the soil WSOC, MBC, ROC, WSON, and MBN were in adverse. The soil organic C in both NF and CP was dominated by alkyl C and O-alkyl C, but the proportions of O-alkyl C and carbonyl C in soil organic C decreased while the proportions of alkyl C and aromatic C as well as the alkyl C/O-alkyl C ratio and the aromaticity of soil organic C all increased significantly after the conversion from NF to CP, indicating that this conversion increased the stability of soil organic C pool significantly. In conclusion, the conversion from NF to CP and the intensive management of CP decreased the contents of soil labile C and soil N but increased the stability of soil C pool significantly.
    [Abstract] [Full Text] [Related] [New Search]