These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deciphering µ-opioid receptor phosphorylation and dephosphorylation in HEK293 cells. Author: Doll C, Pöll F, Peuker K, Loktev A, Glück L, Schulz S. Journal: Br J Pharmacol; 2012 Nov; 167(6):1259-70. PubMed ID: 22725608. Abstract: BACKGROUND AND PURPOSE: The molecular basis of agonist-selective signalling at the µ-opioid receptor is poorly understood. We have recently shown that full agonists such as [D-Ala(2)-MePhe(4)-Gly-ol]enkephalin (DAMGO) stimulate the phosphorylation of a number of carboxyl-terminal phosphate acceptor sites including threonine 370 (Thr(370)) and serine 375 (Ser(375)), and that is followed by a robust receptor internalization. In contrast, morphine promotes a selective phosphorylation of Ser(375) without causing rapid receptor internalization. EXPERIMENTAL APPROACH: Here, we identify kinases and phosphatases that mediate agonist-dependent phosphorylation and dephosphorylation of the µ-opioid receptor using a combination of phosphosite-specific antibodies and siRNA knock-down screening in HEK293 cells. KEY RESULTS: We found that DAMGO-driven phosphorylation of Thr(370) and Ser(375) was preferentially catalysed by G-protein-coupled receptor kinases (GRKs) 2 and 3, whereas morphine-driven Ser(375) phosphorylation was preferentially catalysed by GRK5. On the functional level, inhibition of GRK expression resulted in enhanced µ-opioid receptor signalling and reduced receptor internalization. Analysis of GRK5-deficient mice revealed that GRK5 selectively contributes to morphine-induced Ser(375) phosphorylation in brain tissue. We also identified protein phosphatase 1γ as a µ-opioid receptor phosphatase that catalysed Thr(370) and Ser(375) dephosphorylation at or near the plasma membrane within minutes after agonist removal, which in turn facilitates receptor recycling. CONCLUSIONS AND IMPLICATIONS: Together, the morphine-activated µ-opioid receptor is a good substrate for phosphorylation by GRK5 but a poor substrate for GRK2/3. GRK5 phosphorylates µ-opioid receptors selectively on Ser(375), which is not sufficient to drive significant receptor internalization.[Abstract] [Full Text] [Related] [New Search]