These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA block copolymers: functional materials for nanoscience and biomedicine. Author: Schnitzler T, Herrmann A. Journal: Acc Chem Res; 2012 Sep 18; 45(9):1419-30. PubMed ID: 22726237. Abstract: We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their tailorable properties, these materials have fueled the invention of new techniques and goods, from the yogurt cup to the car seat belts. To fulfill the requirements of modern life, polymers and their composites have become increasingly complex. One strategy for altering polymer properties is to combine different polymer segments within one polymer, known as block copolymers. The microphase separation of the individual polymer components and the resulting formation of well defined nanosized domains provide a broad range of new materials with various properties. Block copolymers facilitated the development of innovative concepts in the fields of drug delivery, nanomedicine, organic electronics, and nanoscience. Block copolymers consist exclusively of organic polymers, but researchers are increasingly interested in materials that combine synthetic materials and biomacromolecules. Although many researchers have explored the combination of proteins with organic polymers, far fewer investigations have explored nucleic acid/polymer hybrids, known as DNA block copolymers (DBCs). DNA as a polymer block provides several advantages over other biopolymers. The availability of automated synthesis offers DNA segments with nucleotide precision, which facilitates the fabrication of hybrid materials with monodisperse biopolymer blocks. The directed functionalization of modified single-stranded DNA by Watson-Crick base-pairing is another key feature of DNA block copolymers. Furthermore, the appropriate selection of DNA sequence and organic polymer gives control over the material properties and their self-assembly into supramolecular structures. The introduction of a hydrophobic polymer into DBCs in aqueous solution leads to amphiphilic micellar structures with a hydrophobic polymer core and a DNA corona. In this Account, we discuss selected examples of recent developments in the synthesis, structure manipulation and applications of DBCs. We present achievements in synthesis of DBCs and their amplification based on molecular biology techniques. We also focus on concepts involving supramolecular assemblies and the change of morphological properties by mild stimuli. Finally, we discuss future applications of DBCs. DBC micelles have served as drug-delivery vehicles, as scaffolds for chemical reactions, and as templates for the self-assembly of virus capsids. In nanoelectronics, DNA polymer hybrids can facilitate size selection and directed deposition of single-walled carbon nanotubes in field effect transistor (FET) devices.[Abstract] [Full Text] [Related] [New Search]