These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pramipexole- and methamphetamine-induced reward-mediated behavior in a rodent model of Parkinson's disease and controls.
    Author: Riddle JL, Rokosik SL, Napier TC.
    Journal: Behav Brain Res; 2012 Jul 15; 233(1):15-23. PubMed ID: 22727039.
    Abstract:
    Pramipexole (PPX) is a dopamine agonist that is FDA-approved for treatment of motor dysfunction in Parkinson's disease and restless leg syndrome. In a subpopulation of treated patients, PPX can lead to impulsive-compulsive disorders including behavioral addictions and dopamine dysregulation syndrome, a phenomenon that mirrors drug addiction. Regardless of this clinical picture, the capacity of PPX to regulate reward-mediated behaviors remains unclear and has not been evaluated in an animal model of Parkinson's disease. To fill this gap, we examined the rewarding potential of PPX in parkinsonian-like rats using conditioned place preference (CPP) and also evaluated associated motor behaviors. Methamphetamine (meth) and saline served as positive and negative controls, respectively. To model Parkinson's disease, the neurotoxin 6-OHDA was injected bilaterally into the dorsolateral striatum. The resulting lesions were verified functionally using a forelimb adjusting step and post mortem immunohistochemical staining of striatal tyrosine hydroxylase. Three pairings of meth (1mg/kg, ip), paired with a unique context, induced CPP in both 6-OHDA-treated and sham-operated rats; saline pairings had no effect. Three pairings of (±)PPX at 2mg/kg ip (equal to 1mg/kg of the active racimer) induced CPP in 6-OHDA-treated rats, but a higher dose (4 mg/kg, ip (±)PPX) was needed to induce CPP in sham rats. In all rats, acute administration of 2mg/kg (±)PPX decreased locomotor activity; the behavior was normalized by the third (±)PPX administration. In summary, these findings reveal that (±)PPX has motor and rewarding effects and suggest the parkinsonian brain state may be more sensitive to the rewarding, but not motoric effects.
    [Abstract] [Full Text] [Related] [New Search]