These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Author: Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Journal: Int Immunopharmacol; 2012 Sep; 14(1):13-20. PubMed ID: 22728094. Abstract: Amyloid β (Aβ) induces the production of neuroinflammatory molecules, which may contribute to the pathogenesis of numerous neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Aromatic (ar)-turmerone, turmeric oil isolated from Curcuma longa, has long been used in Southeast Asia as both a remedy and a food. In this study, we investigated the anti-inflammatory effects of ar-turmerone in BV2 microglial cells. Aβ-stimulated microglial cells were tested for the expression and activation of MMP-9, iNOS, and COX-2, the production of proinflammatory cytokines, chemokines, and ROS, as well as the underlying signaling pathways. Ar-turmerone significantly suppressed Aβ-induced expression and activation of MMP-9, iNOS, and COX-2, but not MMP-2. Ar-turmerone also reduced TNF-α, IL-1β, IL-6, and MCP-1 production in Aβ-stimulated microglial cells. Further, ar-turmerone markedly inhibited the production of ROS. Impaired translocation and activation of NF-κB were observed in Aβ-stimulated microglial cells exposed to ar-turmerone. Furthermore, ar-turmerone inhibited the phosphorylation and degradation of IκB-α as well as the phosphorylation of JNK and p38 MAPK. These results suggest that ar-turmerone impaired the Aβ-induced inflammatory response of microglial cells by inhibiting the NF-κB, JNK, and p38 MAPK signaling pathways. Lastly, ar-turmerone protected hippocampal HT-22 cells from indirect neuronal toxicity induced by activated microglial cells. These novel findings provide new insights into the development of ar-turmerone as a therapeutic agent for the treatment of neurodegenerative disorders.[Abstract] [Full Text] [Related] [New Search]