These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TG-interacting factor-induced superoxide production from NADPH oxidase contributes to the migration/invasion of urothelial carcinoma. Author: Huang HS, Liu ZM, Chen PC, Tseng HY, Yeh BW. Journal: Free Radic Biol Med; 2012 Aug 15; 53(4):769-78. PubMed ID: 22728270. Abstract: Urothelial carcinoma (UC) of the bladder is the fourth most common cancer and the ninth leading cause of death from cancer among men in the United States. However, higher recurrence, resistance to therapy, and poor diagnostic/prognostic biomarkers of UC prompt us to identify novel targets to improve the clinical applications. TG-interacting factor (TGIF), a transcriptional corepressor to modulate the TGF-β signaling, is associated with various types of human cancer. In the present study, we found that cellular migration activity, reactive oxygen species production, AKT(S473) phosphorylation, TGIF, and p67(phox) expression were higher in invasive T24 cells than in noninvasive RT4 cells. In addition, overexpression of TGIF in RT4 cells enhanced cellular migration/invasion ability; it involved NADPH oxidase 2 (Nox2)/p67(phox) complex activation, reactive oxygen species production, and AKT(S473) phosphorylation. In contrast, the migration/invasion ability of T24 cells was suppressed by the knockdown of TGIF or p67(phox), respectively. Overexpression of AKT1 could increase cellular superoxide production and invasion. Moreover, by using the PI3K/AKT inhibitor wortmannin or shRNA of AKT1, the TGIF-induced Nox activation and superoxide production were significantly inhibited. Accordingly, we suggest that PI3K/AKT signaling mediates TGIF-induced Nox2/p67(phox) complex activation and the resultant superoxide production which reinforces the PI3K/AKT signaling to promote the cellular migration/invasion ability of UC.[Abstract] [Full Text] [Related] [New Search]