These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle-luteal transition. Author: Joseph C, Hunter MG, Sinclair KD, Robinson RS. Journal: Reproduction; 2012 Sep; 144(3):361-72. PubMed ID: 22733805. Abstract: The role of the tissue remodelling protein, secreted protein, acidic, cysteine-rich (SPARC), in key processes (e.g. cell reorganisation and angiogenesis) that occur during the follicle-luteal transition is unknown. Hence, we investigated the regulation of SPARC in luteinsing follicular cells and potential roles of SPARC peptide 2.3 in a physiologically relevant luteal angiogenesis culture system. SPARC protein was detected mainly in the theca layer of bovine pre-ovulatory follicles, but its expression was considerably greater in the corpus haemorrhagicum. Similarly, SPARC protein (western blotting) was up-regulated in luteinising granulosa but not in theca cells during a 6-day culture period. Potential regulatory candidates were investigated in luteinising granulosa cells: LH did not affect SPARC (P>0.05); transforming growth factor (TGF) B1 (P<0.001) dose dependently induced the precocious expression of SPARC and increased final levels: this effect was blocked (P<0.001) by SB505124 (TGFB receptor 1 inhibitor). Additionally, fibronectin, which is deposited during luteal development, increased SPARC (P<0.01). In luteal cells, fibroblast growth factor 2 decreased SPARC (P<0.001) during the first 5 days of culture, while vascular endothelial growth factor A increased its expression (P<0.001). Functionally, KGHK peptide, a SPARC proteolytic fragment, stimulated the formation of endothelial cell networks in a luteal cell culture system (P<0.05) and increased progesterone production (P<0.05). Collectively, these findings indicate that SPARC is intricately regulated by pro-angiogenic and other growth factors together with components of the extracellular matrix during the follicle-luteal transition. Thus, it is possible that SPARC plays an important modulatory role in regulating angiogenesis and progesterone production during luteal development.[Abstract] [Full Text] [Related] [New Search]