These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Na(+)/K)+)-ATPase α2-isoform preferentially modulates Ca2(+) transients and sarcoplasmic reticulum Ca2(+) release in cardiac myocytes.
    Author: Despa S, Lingrel JB, Bers DM.
    Journal: Cardiovasc Res; 2012 Sep 01; 95(4):480-6. PubMed ID: 22739122.
    Abstract:
    AIMS: Na(+)/K(+)-ATPase (NKA) is essential in regulating [Na(+)](i), and thus cardiac myocyte Ca(2+) and contractility via Na(+)/Ca(2+) exchange. Different NKA-α subunit isoforms are present in the heart and may differ functionally, depending on specific membrane localization. In smooth muscle and astrocytes, NKA-α2 is located at the junctions with the endo(sarco)plasmic reticulum, where they could regulate local [Na(+)], and indirectly junctional cleft [Ca(2+)]. Whether this model holds for cardiac myocytes is unclear. METHODS AND RESULTS: The ouabain-resistant NKA-α1 cannot be selectively blocked to assess its effect. To overcome this, we used mice in which NKA-α1 is ouabain sensitive and NKA-α2 is ouabain resistant (SWAP mice). We measured the effect of ouabain at low concentration on [Na(+)](i), Ca(2+) transients, and the fractional sarcoplasmic reticulum (SR) Ca(2+) release in cardiac myocytes from wild-type (WT; NKA-α2 inhibition) and SWAP mice (selective NKA-α1 block). At baseline, Na(+) and Ca(2+) regulations are similar in WT and SWAP mice. For equal levels of total NKA inhibition (~25%), ouabain significantly increased Ca(2+) transients (from ΔF/F(0)= 1.5 ± 0.1 to 1.8 ± 0.1), and fractional SR Ca(2+) release (from 24 ± 3 to 29 ± 3%) in WT (NKA-α2 block) but not in SWAP myocytes (NKA-α1 block). This occurred despite a similar and modest increase in [Na(+)](i) (~2 mM) in both groups. The effect in WT mice was mediated specifically by NKA-α2 inhibition because at a similar concentration ouabain had no effect in transgenic mice where both NKA-α1 and NKA-α2 are ouabain resistant. CONCLUSION: NKA-α2 has a more prominent role (vs. NKA-α1) in modulating cardiac myocyte SR Ca(2+) release.
    [Abstract] [Full Text] [Related] [New Search]