These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Author: Liu M, Zhang Y, Wu C, Xiong S, Zhou C. Journal: Int J Biol Macromol; 2012 Nov; 51(4):566-75. PubMed ID: 22743347. Abstract: Incorporation of nanosized reinforcements into chitosan usually results in improved properties and changed microstructures. Naturally occurred halloysite nanotubes (HNTs) are incorporated into chitosan for forming bionanocomposite films via solution casting. The electrostatic attraction and hydrogen bonding interactions between HNTs and chitosan are confirmed. HNTs are uniformly dispersed in chitosan matrix. The tensile strength and Young's modulus of chitosan are enhanced by HNTs. The storage modulus and glass transition temperature of chitosan/HNTs films also increase significantly. Blending with HNTs induces changes in surface nanotopography and increase of roughness of chitosan films. In vitro fibroblasts response demonstrates that both chitosan and chitosan/HNTs nanocomposite films are cytocompatibility even when the loading of HNTs is 10%. In summary, these results provide insights into understanding of the structural relationships of chitosan/HNTs bionanocomposite films in potential applications, such as scaffold materials in tissue engineering.[Abstract] [Full Text] [Related] [New Search]