These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron configuration and hydrogen-bonding pattern in several thymine and uracil analogues studied by 1H-14N NQDR and DFT/QTAIM. Author: Seliger J, Žagar V, Latosińska M, Latosińska JN. Journal: J Phys Chem B; 2012 Aug 02; 116(30):8793-804. PubMed ID: 22747063. Abstract: Some thio- and aza-derivatives of natural nucleobases uracil and thymine: 2-thiouracil, 4-thiouracil, 6-methyl-2-thiouracil, 6-azauracil, and 6-aza-2-thiothymine have been studied experimentally in solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the Density Functional Theory (DFT)/Quantum Theory of Atoms in Molecules (QTAIM). The (14)N resonance frequencies have been measured at 173 and 295 K and assigned to particular nitrogen sites (-N═ and -NH-). The temperature factor has been found negligible. The changes in the molecular skeletons, electric charge distribution, intermolecular interactions pattern, and molecular aggregations caused by oxygen replacement with sulfur and carbon replacement with nitrogen are discussed in detail. Correlations between all the principal components of the (14)N quadrupole coupling tensor have been found helpful in the search for the experimental (14)N NQR frequencies, their assignment to a particular nitrogen positions and estimation of the strength of the inter- and intramolecular interactions. The variation in the NQR parameters have been mainly related to the variation in the population of π-electron orbital. For thiouracil derivatives a general trend is that the stronger the hydrogen bond is, the lower is the asymmetry parameter, while for thymine and 6-aza-2-thiotymine, the opposite relation holds. Differences in correlations of the principal components of the (14)N quadrupole coupling tensor at the amino and iminonitrogen positions in heterocyclic rings are discussed. The effect of C→H and C→N substitution at the amino nitrogen position and C→N substitution at the iminonitrogen position on the quadrupole coupling tensor is analyzed. This study also demonstrates the advantages of combining NQR and DFT/QTAIM to predict an unsolved crystalline structure of 4-thiouracil.[Abstract] [Full Text] [Related] [New Search]