These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Guided bone regeneration using cyanoacrylate-combined calcium phosphate in a dehiscence defect: a histologic study in dogs.
    Author: Lee JS, Ko SH, Kim YT, Jung UW, Choi SH.
    Journal: J Oral Maxillofac Surg; 2012 Sep; 70(9):2070-9. PubMed ID: 22749520.
    Abstract:
    PURPOSE: This study evaluated the effects of cyanoacrylate-combined calcium phosphate (CCP) as a candidate for a barrier membrane substitute in guided bone regeneration and the space maintenance capability of CCP placed in a dehiscence defect model. MATERIALS AND METHODS: Six standardized dehiscence defects (5 × 3 mm, height × width) around dental implants were created on unilateral edentulous ridges in 5 dogs, where each defect was treated with sham surgery, biphasic calcium phosphate (BCP), CCP, barrier membrane (MEM), BCP + MEM, and CCP + MEM. The animals were sacrificed after an 8-week healing interval for histologic and histometric analyses. RESULTS: The BCP and CCP sites showed increased bone formation compared with the control sites, although incomplete defect resolution occurred; bone regeneration heights (area) averaged 3.52 ± 0.69 mm (4.94 ± 2.59 mm(2)), 3.51 ± 0.16 mm (4.10 ± 1.99 mm(2)), and 1.53 ± 0.42 mm (1.01 ± 0.74 mm(2)) for the BCP, CCP, and control sites, respectively. All the MEM sites showed more bone formation compared with the sites that received the same biomaterials without a MEM, and the BCP + MEM and CCP + MEM sites showed extensive bone formation within the defect and on top of the implant; the bone regeneration heights (area) averaged 3.96 ± 2.86 mm (12.46 ± 11.61 mm(2)), 5.45 ± 0.25 mm (11.63 ± 1.97 mm(2)), and 2.62 ± 0.27 mm (3.43 ± 0.98 mm(2)) for the BCP + MEM, CCP + MEM, and MEM sites, respectively. CONCLUSIONS: CCP can be a good scaffold for supporting an MEM as opposed to acting as a substitute for the MEM in guided bone regeneration.
    [Abstract] [Full Text] [Related] [New Search]