These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification, crystallization and preliminary X-ray diffraction analysis of a hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) from Coffea canephora involved in chlorogenic acid biosynthesis. Author: Lallemand LA, McCarthy JG, McSweeney S, McCarthy AA. Journal: Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jul 01; 68(Pt 7):824-8. PubMed ID: 22750875. Abstract: Chlorogenic acids (CGAs) are a group of soluble phenolic compounds that are produced by a variety of plants, including Coffea canephora (robusta coffee). The last step in CGA biosynthesis is generally catalysed by a specific hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HQT), but it can also be catalysed by the more widely distributed hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT). Here, the cloning and overexpression of HCT from C. canephora in Escherichia coli as well as its purification and crystallization are presented. Crystals were obtained by the sitting-drop technique at 293 K and X-ray diffraction data were collected on the microfocus beamline ID23-2 at the ESRF. The HCT crystals diffracted to better than 3.0 Å resolution, belonged to space group P4(2)2(1)2 with unit-cell parameters a = b = 116.1, c = 158.9 Å and contained two molecules in the asymmetric unit. The structure was solved by molecular replacement and is currently under refinement. Such structural data are needed to decipher the molecular basis of the substrate specifities of this key enzyme, which belongs to the large plant acyl-CoA-dependent BAHD acyltransferase superfamily.[Abstract] [Full Text] [Related] [New Search]