These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Author: Kameyama K, Miyamoto T, Shiono T, Shinogi Y. Journal: J Environ Qual; 2012; 41(4):1131-7. PubMed ID: 22751055. Abstract: Application of biochar has been suggested to improve water- and fertilizer-retaining capacity of agricultural soil. The objective of this study was to evaluate the effects of bagasse charcoal (sugarcane [ L.] bagasse-derived biochar) on nitrate (NO) leaching from Shimajiri Maji soil, which has low water- and fertilizer-retaining capacity. The nitrate adsorption properties of bagasse charcoal formed at five pyrolysis temperatures (400-800° C) were investigated to select the most suitable bagasse charcoal for NO adsorption. Nitrate was able to adsorb onto the bagasse charcoal formed at pyrolysis temperatures of 700 to 800° C. Nitrate adsorption by bagasse charcoal (formed at 800° C) that passed through a 2-mm sieve was in a state of nonequilibrium even at 20 h after the addition of 20 mg N L KNO solution. Measurements suggested that the saturated and unsaturated hydraulic conductivity of bagasse charcoal (800° C)-amended soils are affected by changes in soil tortuosity and porosity and the presence of meso- and micropores in the bagasse charcoal, which did not contribute to soil water transfer. In NO leaching studies using bagasse charcoal (800° C)-amended soils with different charcoal contents (0-10% [w/w]), the maximum concentration of NO in effluents from bagasse charcoal-amended soil columns was approximately 5% less than that from a nonamended soil column because of NO adsorption by bagasse charcoal (800° C). We conclude that application of bagasse charcoal (800°C) to the soil will increase the residence time of NO in the root zone of crops and provide greater opportunity for crops to absorb NO.[Abstract] [Full Text] [Related] [New Search]