These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Author: Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V. Journal: Langmuir; 2012 Aug 07; 28(31):11440-7. PubMed ID: 22759080. Abstract: The adsorption of carboxymethyl cellulose (CMC), one of the most important cellulose derivatives, is crucial for many scientific investigations and industrial applications. Especially for surface modifications and functionalization of materials, the polymer is of interest. The adsorption properties of CMC are dependent not only on the solutions state, which can be influenced by the pH, temperature, and electrolyte concentration, but also on the chemical composition of the adsorbents. We therefore performed basic investigation studies on the interaction of CMC with a variety of polymer films. Thin films of cellulose, cellulose acetate, deacetylated cellulose acetate, polyethylene terephthalate, and cyclo olefin polymer were therefore prepared on sensors of a QCM-D (quartz crystal microbalance) and on silicon substrates. The films were characterized with respect to the thickness, wettability, and chemical composition. Subsequently, the interaction and deposition of CMC in a range of pH values without additional electrolyte were measured with the QCM-D method. A comparison of the QCM-D results showed that CMC is favorably deposited on pure cellulose films and deacetylated cellulose acetate at low pH values. Other hydrophilic surfaces such as silicon dioxide or polyvinyl alcohol coated surfaces did not adsorb CMC to a significant extent. Atomic force microcopy confirmed that the morphology of the adsorbed CMC layers differed depending on the substrate. On hydrophobic polymer films, CMC was deposited in the form of larger particles in lower amounts whereas hydrophilic cellulose substrates were to a high extent uniformly covered by adsorbed CMC. The chemical similarity of the CMC backbone seems to favor the irreversible adsorption of CMC when the molecule is almost uncharged at low pH values. A selectivity of the cellulose CMC interaction can therefore be assumed. All CMC treated polymer films exhibited an increased hydrophilicity, which confirmed their modification with the functional molecule.[Abstract] [Full Text] [Related] [New Search]