These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Observation of ligand transfer in ba3 oxidase from Thermus thermophilus: simultaneous FTIR detection of photolabile heme a3(2+)-CN and transient Cu(B)(2+)-CN complexes.
    Author: Loullis A, Noor MR, Soulimane T, Pinakoulaki E.
    Journal: J Phys Chem B; 2012 Aug 02; 116(30):8955-60. PubMed ID: 22765881.
    Abstract:
    FTIR and light-minus-dark FTIR spectroscopy have been employed to investigate the reaction of oxidized and fully reduced ba(3) oxidase with cyanide. The characterization of the structures of the bound CN(-) in the binuclear heme Fe-Cu(B) center is essential, given that a central issue in the function of ba(3) oxidase is the extent to which the partially reduced substrates interact with the two metals. In the reaction of oxidized ba(3) oxidase with cyanide the initially formed heme a(3)(3+)-C≡N-Cu(B)(2+) species with ν(CN) frequency at 2152 cm(-1) was replaced by a photolabile complex with a frequency at 2075 cm(-1) characteristic of heme a(3)(2+)-CN(-). Photolysis of the heme a(3)(2+)-CN(-) adduct produced a band at 2146 cm(-1) attributed to the formation of a transient Cu(B)(2+)-CN(-) complex. All forms are pH independent between pH 5.5-9.5 and at pD 7.5 indicating the absence of ionizable groups that influence the properties of the cyanide complexes. In contrast to previous reports, our results show that CN(-) does not bind simultaneously to both heme a(3)(2+) and Cu(B)(2+) to form the mixed valence a(3)(2+)-CN·Cu(B)(2+)CN species. The photolysis products of the heme a(3)(2+)-CN(-)/Cu(B)(2+) and heme a(3)(2+)-CN(-)/Cu(B)(1+) species are different suggesting that relaxation dynamics in the binuclear center following ligand photodissociation are dependent on the oxidation state of Cu(B).
    [Abstract] [Full Text] [Related] [New Search]