These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Size of the pores created by an electric pulse: microsecond vs millisecond pulses. Author: Saulis G, Saulė R. Journal: Biochim Biophys Acta; 2012 Dec; 1818(12):3032-9. PubMed ID: 22766475. Abstract: Here, the sizes of the pores created by square-wave electric pulses with the duration of 100 μs and 2 ms are compared for pulses with the amplitudes close to the threshold of electroporation. Experiments were carried out with three types of cells: mouse hepatoma MH-22A cells, Chinese hamster ovary (CHO) cells, and human erythrocytes. In the case of a short pulse (square-wave with the duration of 100 μs or exponential with the time constant of 22 μs), in the large portion (30-60%) of electroporated (permeable to potassium ions) cells, an electric pulse created only the pores, which were smaller than the molecule of bleomycin (molecular mass of 1450 Da, r≈0.8 nm) or sucrose (molecular mass of 342.3 Da, radius-0.44-0.52 nm). In the case of a long 2-ms duration pulse, in almost all cells, which were electroporated, there were the pores larger than the molecules of bleomycin and/or sucrose. Kinetics of pore resealing depended on the pulse duration and was faster after the shorter pulse. After a short 100-μs duration pulse, the disappearance of the pores permeable to bleomycin was completed after 6-7 min at 24-26°C, while after a long 2-ms duration pulse, this process was slower and lasted 15-20 min. Thus, it can be concluded that a short 100-μs duration pulse created smaller pores than the longer 2-ms duration pulse. This could be attributed to the time inadequacy for pores to grow and expand during the pulse, in the case of short pulses.[Abstract] [Full Text] [Related] [New Search]