These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development and testing of bioelectrochemical reactors converting wastewater organics into hydrogen peroxide. Author: Modin O, Fukushi K. Journal: Water Sci Technol; 2012; 66(4):831-6. PubMed ID: 22766874. Abstract: In a bioelectrochemical system, the energy content in dissolved organic matter can be used to power the production of hydrogen peroxide (H(2)O(2)), which is a potentially useful chemical at wastewater treatment plants. H(2)O(2) can be produced by the cathodic reduction of oxygen. We investigated four types of gas-diffusion electrodes (GDEs) for this purpose. A GDE made of carbon nanoparticles bound with 30% polytetrafluoroethylene (PTFE) (wt./wt.C) to a carbon fiber paper performed best and catalyzed H(2)O(2) production from oxygen in air with a coulombic efficiency of 95.1%. We coupled the GDE to biological anodes in two bioelectrochemical reactors. When the anodes were fed with synthetic wastewater containing acetate they generated a current of up to ∼0.4 mA/mL total anode compartment volume. H(2)O(2) concentrations of ∼0.2 and ∼0.5% could be produced in 5 mL catholyte in 9 and 21 h, respectively. When the anodes were fed with real wastewater, the generated current was ∼0.1 mA/mL and only 84 mg/L of H(2)O(2) was produced.[Abstract] [Full Text] [Related] [New Search]