These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity.
    Author: Williams GO, Chen JS, Euser TG, Russell PS, Jones AC.
    Journal: Lab Chip; 2012 Sep 21; 12(18):3356-61. PubMed ID: 22767267.
    Abstract:
    Photonic crystal fibre constitutes an optofluidic system in which light can be efficiently coupled into a solution-phase sample, contained within the hollow core of the fibre, over long path-lengths. This provides an ideal arrangement for the highly sensitive monitoring of photochemical reactions by absorption spectroscopy. We report here the use of UV/vis spectroscopy to measure the kinetics of the photochemical and thermal cis-trans isomerisation of sub-picomole samples of two azo dyes within the 19-μm diameter core of a photonic crystal fibre, over a path length of 30 cm. Photoisomerisation quantum yields are the first reported for "push-pull" azobenzenes in solution at room temperature; such measurements are challenging because of the fast thermal isomerisation process. Rate constants obtained for thermal isomerisation are in excellent agreement with those established previously in conventional cuvette-based measurements. The high sensitivity afforded by this intra-fibre method enables measurements in solvents in which the dyes are too insoluble to permit conventional cuvette-based measurements. The results presented demonstrate the potential of photonic crystal fibres as optofluidic elements in lab-on-a-chip devices for photochemical applications.
    [Abstract] [Full Text] [Related] [New Search]