These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Use of protein-mediated lipid exchange in the study of membrane-bound enzymes. The lipid dependence of glucose-6-phosphatase.
    Author: Dyatlovitskaya EV, Lemenovskaya AF, Bergelson LD.
    Journal: Eur J Biochem; 1979 Sep; 99(3):605-12. PubMed ID: 227688.
    Abstract:
    The ability of liver lipid-exchange proteins to introduce foreign phospholipids into microsomes was used in a study of the lipid dependence of glucose-6-phosphatase. Supplementation of intact rat liver and hepatoma microsomes with exogeneous aminophospholipids prevents the decline of glucose-6-phosphatase activity during incubation, whereas the introduction of exogeneous phosphatidylcholine has no protective effect. On the contrary with deoxycholate-disrupted hepatoma microsomes, introduction of additional phosphatidylcholine causes activation while phosphatidylethanolamine has only little effect. The results are explained by assuming that the transport unit and the catalytic moiety of the glucose-6-phosphatase system have different lipid requirements, the activity of the former protein depending mainly on phosphatidylethanolamine and phosphatidylserine and that of the catalytic protein depending on phosphatidylcholine. In deoxycholate-disrupted liver microsomes (in which both the glucose-6-phosphatase activity and the phosphatidylcholine content are much higher than in hepatoma microsomes) incubation with phosphatidylcholine and lipid-exchange proteins alters neither the phospholipid composition nor the enzyme activity. THis suggests that the diminished activity of glucose-6-phosphatase in hepatomas may be partly due to a low level of phosphatidylcholine.
    [Abstract] [Full Text] [Related] [New Search]