These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance.
    Author: Wang J, Sun J, Chen Q, Gao Y, Li L, Li H, Leng D, Wang Y, Sun Y, Jing Y, Wang S, He Z.
    Journal: Biomaterials; 2012 Oct; 33(28):6877-88. PubMed ID: 22770799.
    Abstract:
    A star-shape copolymer of nanostructure-forming material, P-glycoprotein (P-gp) reversible inhibitor and anticancer enhancer, lysine-linked di-tocopherol polyethylene glycol 2000 succinate (PLV(2K)), was synthesized to overcome multidrug resistance (MDR) in cancer chemotherapy. The critical micellar concentration of PLV(2K) was as low as 1.14 μg/mL, which can endow nanoassemblies good physical stability. Doxorubicin (DOX) was encapsulated into the hydrophobic core of PLV(2K) (PLV(2K)-DOX), with encapsulation efficiency as high as 94.5% and a particle size of 16.4 nm. DOX released from PLV(2K)-DOX nanomicelles was pH-dependent, which ensures micelles stable in blood circulation and releases DOX within tumor cells. Facilitated by the cytotoxicity and uncompetitive P-gp ATPase inhibition by PLV(2K), PLV(2K)-DOX showed greater cytotoxicity compared with DOX solution with increased intracellular accumulation in resistant MCF-7/Adr cells. PLV(2K)-DOX nanomicelles were uptaken into MCF-7/Adr cells via macropinocytosis and caveolae-mediated endocytosis, which further facilitate escapement of P-gp efflux. The anticancer efficacy in vivo was evaluated in 4T1-bearing mice and inhibition of tumor by PLV(2K)-DOX was more effective than TPGS-DOX and DOX solution. In summary, PLV(2K) copolymer has striking functions such as uncompetitive P-gp ATPase reversible inhibitor and anticancer efficacy, and could be a promising nanocarrier in improving the chemotherapy of hydrophobic anticancer drugs.
    [Abstract] [Full Text] [Related] [New Search]