These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel tissue inhibitor of metalloproteinase in blood clam Tegillarca granosa: molecular cloning, tissue distribution and expression analysis. Author: Wang Q, Bao Y, Huo L, Gu H, Lin Z. Journal: Fish Shellfish Immunol; 2012 Sep; 33(3):645-51. PubMed ID: 22771965. Abstract: Tissue inhibitor of metalloproteinases (TIMPs) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has been found to be broader as it includes the inhibition of several of the MMPs, etc. The cDNA encoding TIMP-4-like gene from blood clam Tegillarca granosa (designated as Tg-TIMP-4-like) which is the first tissue inhibitor of metalloproteinase identified in blood clams, was cloned and characterized. It was of 1164 bp, and an open reading frame (ORF) of 666 bp encoding a putative protein of 222 amino acids. The predicted amino acid sequence comprised all recognized functional domains found in other TIMP homologues and showed the highest (30.56%) identity to the TIMP-1.3 from Crassostrea gigas. Several highly conserved motifs including several TIMP signatures, amino acid residue Cys³⁰ responsible for coordinating the metal ions, the Cys-X-Cys motif and the putative NTR (netrin) domain were almost completely conserved in the deduced amino acid of Tg-TIMP-4 like, which indicated that Tg-TIMP-4-like should be a member of the TIMP family. The mRNA expression of Tg-TIMP-4-like in the tissues of mantle, adductor muscle, foot, gill, hemocyte and hepatopancreas was examined by quantitative real-time PCR (qT-PCR) and mRNA transcripts of Tg-TIMP-4-like were mainly detected in hemocyte, and weakly detected in the other tissues. We also observed that Tg-TIMP-4 like mRNA accumulated significantly during Vibrio parahaemolyticus, Peptidogylcan (PGN) and Lipopolysaccharide (LPS) challenge, whereas the timing and quantitative differences of mRNA expression against different challenge indicated that Tg-TIMP-4-like may play a pivotal role in mollusc defense mechanisms.[Abstract] [Full Text] [Related] [New Search]