These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium. Author: Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR. Journal: J Bacteriol; 2012 Sep; 194(18):4983-94. PubMed ID: 22773790. Abstract: Sinorhizobium meliloti can live as a soil saprophyte and can engage in a nitrogen-fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma (σ) factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative σ factors, including two putative RpoH ("heat shock") σ factors. We used custom Affymetrix symbiosis chips to characterize the global transcriptional response of S. meliloti rpoH1, rpoH2, and rpoH1 rpoH2 mutants during heat shock and stationary-phase growth. Under these conditions, expression of over 300 genes is dependent on rpoH1 and rpoH2. We mapped transcript start sites of 69 rpoH-dependent genes using 5' RACE (5' rapid amplification of cDNA ends), which allowed us to determine putative RpoH1-dependent, RpoH2-dependent, and dual-promoter (RpoH1- and RpoH2-dependent) consensus sequences that were each used to search the genome for other potential direct targets of RpoH. The inferred S. meliloti RpoH promoter consensus sequences share features of Escherichia coli RpoH promoters but lack extended -10 motifs.[Abstract] [Full Text] [Related] [New Search]