These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Notionally steady background noise acts primarily as a modulation masker of speech. Author: Stone MA, Füllgrabe C, Moore BC. Journal: J Acoust Soc Am; 2012 Jul; 132(1):317-26. PubMed ID: 22779480. Abstract: Stone et al. [J. Acoust. Soc Am. 130, 2874-2881 (2011)], using vocoder processing, showed that the envelope modulations of a notionally steady noise were more effective than the envelope energy as a masker of speech. Here the same effect is demonstrated using non-vocoded signals. Speech was filtered into 28 channels. A masker centered on each channel was added to the channel signal at a target-to-background ratio of -5 or -10 dB. Maskers were sinusoids or noise bands with bandwidth 1/3 or 1 ERB(N) (ERB(N) being the bandwidth of "normal" auditory filters), synthesized with Gaussian (GN) or low-noise (LNN) statistics. To minimize peripheral interactions between maskers, odd-numbered channels were presented to one ear and even to the other. Speech intelligibility was assessed in the presence of each "steady" masker and that masker 100% sinusoidally amplitude modulated (SAM) at 8 Hz. Intelligibility decreased with increasing envelope fluctuation of the maskers. Masking release, the difference in intelligibility between the SAM and its "steady" counterpart, increased with bandwidth from near-zero to around 50 percentage points for the 1-ERB(N) GN. It is concluded that the sinusoidal and GN maskers behaved primarily as energetic and modulation maskers, respectively.[Abstract] [Full Text] [Related] [New Search]