These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [ITF-2357 on inhibition myeloid leukemic cell lines cells proliferation in vitro and its mechanism].
    Author: Yu WJ, Wang L, You LS, Mei C, Ma QL, Jin J.
    Journal: Zhonghua Xue Ye Xue Za Zhi; 2012 May; 33(5):366-70. PubMed ID: 22781793.
    Abstract:
    OBJECTIVE: To explore the effect of ITF2357, a novel histone deacetylase (HDAC) inhibitor, on the growth, differentiation and apoptosis of acute myeloid leukemic (AML) cells and its mechanism. METHODS: AML cell lines kasumi-1 cells as a model for AML1-ETO positive, and THP1 cells for AML1-ETO negative, the leukemic cells proliferation was analyzed by MTT assay, expression of myeloid-specific differentiation antigen and cell cycle by flow cytometry, cell apoptosis by annexin V staining and flow cytometry. AML1-ETO, acetyl-histone, and caspase protein was analyzed by Western blot. RESULTS: 0.5 µmol/L ITF2357 treatment significantly inhibited kasumi-1 cells proliferation, with the 48 h half inhibitory concentration (IC(50)) of 0.1 µmol/L. The initial inhibitory concentration of THP1 cell line was 5 µmol/L. ITF 2357 induced apoptosis of kasumi-1 cells in a time- and dose-dependent manner. A dose-dependent increase in early apoptosis occurred at 24 hours treatment and in late apoptosis at 48 hours treatment by ITF2357. Early apoptosis cells increased from (1.44 ± 1.52)% to (24.51 ± 5.79)%. Late apoptosis cells increased from (2.37 ± 2.8)% to (63.66 ± 1.56)%. ITF2357 induced AML1-ETO degradation by caspase-dependent pathway. 0.25 µmol/L ITF2357 induced a time- and dose-dependent increase in expression of myeloid cell surface protein CD13 and CD15. 5 µmol/L ITF2357 blocked the cells at G(0)/G(1) phase, G(0)/G(1) cells increased from (39.69 ± 6.56)% to (79.2 ± 6.51)% and s-phase cells declined from (60.12 ± 3.29)% to (18.97 ± 6.62)%. Kasumi-1 cells incubated with 0.5 µmol/L of ITF2357, AML1-ETO protein began to decrease at 24 hours and could hardly be detected at 96 hours. ITF2357 induced AML1/ETO degradation through a caspase-dependent mechanism. At the same time, acetylated H3 and H4 increased. CONCLUSION: Low-dose HDAC inhibitor ITF2357 can effectively inhibit the AML cells proliferation, especially for AML1-ETO positive AML cells. It inhibits Kasumi-1 cells proliferation degradation of AML1-ETO protein expression, blocks the cells at G(0)/G(1) phase, and induces apoptosis and differentiation of the cells.
    [Abstract] [Full Text] [Related] [New Search]