These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Carbonyl J acid derivatives block protein priming of hepadnaviral P protein and DNA-dependent DNA synthesis activity of hepadnaviral nucleocapsids. Author: Wang YX, Wen YM, Nassal M. Journal: J Virol; 2012 Sep; 86(18):10079-92. PubMed ID: 22787212. Abstract: Current treatments for chronic hepatitis B are effective in only a fraction of patients. All approved directly antiviral agents are nucleos(t)ide analogs (NAs) that target the DNA polymerase activity of the hepatitis B virus (HBV) P protein; resistance and cross-resistance may limit their long-term applicability. P protein is an unusual reverse transcriptase that initiates reverse transcription by protein priming, by which a Tyr residue in the unique terminal protein domain acts as an acceptor of the first DNA nucleotide. Priming requires P protein binding to the ε stem-loop on the pregenomic RNA (pgRNA) template. This interaction also mediates pgRNA encapsidation and thus provides a particularly attractive target for intervention. Exploiting in vitro priming systems available for duck HBV (DHBV) but not HBV, we demonstrate that naphthylureas of the carbonyl J acid family, in particular KM-1, potently suppress protein priming by targeting P protein and interfering with the formation of P-DHBV ε initiation complexes. Quantitative evaluation revealed a significant increase in complex stability during maturation, yet even primed complexes remained sensitive to KM-1 concentrations below 10 μM. Furthermore, KM-1 inhibited the DNA-dependent DNA polymerase activity of both DHBV and HBV nucleocapsids, including from a lamivudine-resistant variant, directly demonstrating the sensitivity of human HBV to the compound. Activity against viral replication in cells was low, likely due to low intracellular availability. KM-1 is thus not yet a drug candidate, but its distinct mechanism of action suggests that it is a highly useful lead for developing improved, therapeutically applicable derivatives.[Abstract] [Full Text] [Related] [New Search]