These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A light- and electron-microscopic investigation of the optic tectum of the frog, Rana pipiens, II: The neurons that give rise to the crossed tecto-bulbar pathway.
    Author: Hughes TE.
    Journal: Vis Neurosci; 1990 Jun; 4(6):519-31. PubMed ID: 2278932.
    Abstract:
    The superficial layers of the frog's optic tectum, Potter's (1969) layers A-G, comprise a complex neuropil made up of many afferent axons, the somata of a few neurons, and many dendrites from the neurons located in the deeper layers. Different types of retinal axons are believed to terminate in different layers (Maturana et al., 1960; Kuljis & Karten, 1988; Sargent et al., 1989), but little is known about the relationships between each type of input and the dendrites of the deep tectal neurons that extend into these superficial layers. The present study used the method of retrograde transport of horseradish peroxidase to study the synaptic contacts on the dendrites of the neurons that give rise to the crossed tecto-bulbar pathway. These cells have apical dendrites that ascend through the superficial retino-recipient layers. The somata of the cells that give rise to the crossed tecto-bulbar pathway are located in the superficial half of layer 6, preferentially clustered along the caudal, lateral, and rostral margins of the tectum. The somata of these cells range from 8-30 microns in diameter. Their axons are large (2-4 microns in diameter) myelinated fibers that arise from either their somata or proximal dendrites. Their axons travel within the deep medullary layer to leave the tectum at the lateral margin. Their dendritic arbors extend obliquely through the superficial layers to reach layer B where they turn and extend within the layer for up to 0.5 mm. The somata of these cells receive only a scant synaptic input. In contrast, their dendrites receive input in every layer, but the nature of this input varies from layer to layer. Synaptic terminals that resemble retinal ganglion cell boutons contact the labeled dendrites in layers B, F, and G. This indicates that the dendrites may receive monosynaptic input from several types of retinal ganglion cells. Terminals with small, flattened vesicles also contact the dendrites of these cells in each layer. In layer F and below, the terminals with flattened vesicles constitute 15% of the contacts; above layer F they constitute only 5-8% of the contacts. Terminals with medium-sized, flattened vesicles also contact the dendrites of these cells in every layer and constitute a large proportion of their input (33-95%). The latter terminals resemble those that are often postsynaptic to retinal terminals.
    [Abstract] [Full Text] [Related] [New Search]