These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary.
    Author: Osburn CL, Handsel LT, Mikan MP, Paerl HW, Montgomery MT.
    Journal: Environ Sci Technol; 2012 Aug 21; 46(16):8628-36. PubMed ID: 22803700.
    Abstract:
    Excitation-emission matrix (EEM) fluorescence was combined with parallel factor analysis (PARAFAC) to model base-extracted particulate (POM) and dissolved (DOM) organic matter quality in the Neuse River Estuary (NRE), North Carolina, before and after passage of Hurricane Irene in August 2011. Principle components analysis was used to determine that four of the PARAFAC components (C1-C3 and C6) were terrestrial sources to the NRE. One component (C4), prevalent in DOM of nutrient-impacted streams and estuaries and produced in phytoplankton cultures, was enriched in the POM and in surface sediment pore water DOM. One component (C5) was related to recent autochthonous production. Photoexposure of unfiltered Neuse River water caused an increase in slope ratio values (S(R)) which corresponded to an increase in the ratio C2:C3 for DOM, and the production of C4 fluorescence in both POM and DOM. Changes to the relative abundance of C4 in POM and DOM indicated that advection of pore water DOM from surface sediments into overlying waters could increase the autochthonous quality of DOM in shallow microtidal estuaries. Modeling POM and DOM simultaneously with PARAFAC is an informative technique that is applicable to assessments of estuarine water quality.
    [Abstract] [Full Text] [Related] [New Search]