These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deciphering a global network of functionally associated post-translational modifications.
    Author: Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, Gavin AC, van Noort V, Bork P.
    Journal: Mol Syst Biol; 2012 Jul 17; 8():599. PubMed ID: 22806145.
    Abstract:
    Various post-translational modifications (PTMs) fine-tune the functions of almost all eukaryotic proteins, and co-regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co-evolution within proteins based on the co-occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co-evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50,000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane-associated proteins and in the context of particular protein domains and short-linear motifs. The global network of co-evolving PTM types implies a complex and intertwined post-translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.
    [Abstract] [Full Text] [Related] [New Search]