These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A computational approach to tuning the photochemistry of platinum(IV) anticancer agents.
    Author: Tai HC, Zhao Y, Farrer NJ, Anastasi AE, Clarkson G, Sadler PJ, Deeth RJ.
    Journal: Chemistry; 2012 Aug 20; 18(34):10630-42. PubMed ID: 22807241.
    Abstract:
    Diazido Pt(IV) complexes are inert stable prodrugs that can be photoactivated to produce Pt(II) species with promising anticancer activity. Our studies of the photochemistry of Pt(IV) complexes, [Pt(X)(2) (Y)(2) (Z)(2) ](0/-1) (X=N-ligands (NH(3) , pyridine, etc.)/S(CH(3) )(2) /H(-) , Y=(pseudo)halogen (N(3) (-) , I(-) ), Z=OR(-) , R=H, Ac) by time-dependent density functional theory (TDDFT) show close agreement with spectroscopic data. Broad exploration of cis/trans geometries, trans influences, the nature of the OR(-) and (pseudo)halogen ligands, electron-withdrawing/donating/delocalising substituents on the N-ligands, and intramolecular H bonds shows that: 1) the design of platinum(IV) complexes with intense bands shifted towards longer wavelengths (from 289 to ∼330 nm) can be achieved by introducing intramolecular H bonds involving the OH ligands and 2-hydroxyquinoline or by iodido ligands; 2) mesomeric electron-withdrawing substituents on pyridine result in low-energy absorption with significant intensity in the visible region; and 3) the distinct makeup of the molecular orbitals involved in the electronic transitions for cis/trans-{Pt(N(3) )(2) } isomers results in different photoproducts. In general, the comparison of the optimised geometries shows that Pt(IV) complexes with longer PtL bonds are more likely to undergo photoreduction with longer-wavelength light. The novel complex trans,trans,trans-[Pt(N(3) )(2) (OH)(2) (NH(3) )(4-nitropyridine)] with predicted absorption in the visible region has been synthesised. The experimental UV/Vis spectrum in aqueous solution correlates well with the intense band in the computed spectrum, whereas the overlay in the low-energy region can be improved by a solvent model. This combined computational and experimental study shows that TDDFT can be used to tune the coordination environment for optimising photoactive Pt(IV) compounds as anticancer agents.
    [Abstract] [Full Text] [Related] [New Search]