These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pseudomonas aeruginosa inactivation mechanism is affected by capsular extracellular polymeric substances reactivity with chlorine and monochloramine.
    Author: Xue Z, Hessler CM, Panmanee W, Hassett DJ, Seo Y.
    Journal: FEMS Microbiol Ecol; 2013 Jan; 83(1):101-11. PubMed ID: 22809489.
    Abstract:
    The reactivity of capsular extracellular polymeric substances (EPS) to chlorine and monochloramine was assessed and compared in this study. The impact of capsular EPS on Gram-negative bacteria Pseudomonas aeruginosa inactivation mechanisms was investigated both qualitatively and quantitatively using a combination of batch experiments, viability tests with LIVE/DEAD staining, and Fourier transform infrared spectroscopy (FTIR). Both wild-type and isogenic mutant strains with different alginate EPS production capabilities were used to evaluate their susceptibility to chlorine and monochloramine. The mucA22 mutant strain, which overproduces the EPS composed largely of acidic polysaccharide alginate, exhibited high resistance and prolonged inactivation time to both chlorine and monochloramine relative to PAO1 (wild-type) and algT(U) mutant strains (alginate EPS deficient). Multiple analyses were combined to better understand the mechanistic role of EPS against chlorine-based disinfectants. The extracted EPS exhibited high reactivity with chlorine and very low reactivity with monochloramine, suggesting different mechanism of protection against disinfectants. Moreover, capsular EPS on cell membrane appeared to reduce membrane permeabilization by disinfectants as suggested by deformation of key functional groups in EPS and cell membrane (the C-O-C stretching of carbohydrate and the C=O stretching of ester group). The combined results supported that capsular EPS, acting either as a disinfectant consumer (for chlorine inactivation) or limiting access to reactive sites on cell membrane (for monochloramine inactivation), provide a protective role for bacterial cells against regulatory residual disinfectants by reducing membrane permeabilization.
    [Abstract] [Full Text] [Related] [New Search]