These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Towards an understanding of the evolution of the chorioallantoic placenta: steroid biosynthesis and steroid hormone signaling in the chorioallantoic membrane of an oviparous reptile. Author: Cruze L, Kohno S, McCoy MW, Guillette LJ. Journal: Biol Reprod; 2012 Sep; 87(3):71. PubMed ID: 22811568. Abstract: Amniotes, mammals, reptiles, and birds form common extraembryonic membranes during development to perform essential functions, such as protection, nutrient transfer, gas exchange, and waste removal. Together with the maternal uterus, extraembryonic membranes of viviparous (live-bearing) amniotes develop as an endocrine placenta that synthesizes and responds to steroid hormones critical for development. The ability of these membranes to synthesize and respond to steroid hormone signaling has traditionally been considered an innovation of placental amniotes. However, our laboratory recently demonstrated that this ability extends to the chorioallantoic membrane (CAM) of an oviparous (egg-laying) amniote, the domestic chicken, and we hypothesized that steroidogenic extraembryonic membranes could be an evolutionarily conserved characteristic of all amniotes because of similarities in basic structure, function, and shared evolutionary ancestry. In this study, we examined steroid hormone synthesis and signaling in the CAM of another oviparous amniote, the American alligator (Alligator mississippiensis). We quantified mRNA expression of a steroidogenic factor involved in the regulation of steroidogenesis (NR5A1), the key steroidogenic enzymes involved in the synthesis of progestins (HSD3B1), androgens (CYP17A1), and estrogens (CYP19A1), and the receptors involved in the signaling of progestins (PR), androgens (AR), estrogens (ESR1 and ESR2), and glucocorticoids (GR). Furthermore, we performed protein immunolocalization for PR and ESR1. Collectively, our findings indicate that the alligator CAM has the capability to regulate, synthesize, and respond to steroid hormone signaling, thus, supporting our hypothesis that the extraembryonic membranes of Amniota share a unifying characteristic, that is, the ability to synthesize and respond to steroid hormones.[Abstract] [Full Text] [Related] [New Search]