These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium binding promotes prion protein fragment 90-231 conformational change toward a membrane destabilizing and cytotoxic structure. Author: Sorrentino S, Bucciarelli T, Corsaro A, Tosatto A, Thellung S, Villa V, Schininà ME, Maras B, Galeno R, Scotti L, Creati F, Marrone A, Re N, Aceto A, Florio T, Mazzanti M. Journal: PLoS One; 2012; 7(7):e38314. PubMed ID: 22811758. Abstract: The pathological form of prion protein (PrP(Sc)), as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc) extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁) increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc). In the present study we demonstrate that hPrP₉₀₋₂₃₁, pre-incubated with 10 mM Ca⁺⁺ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP₉₀₋₂₃₁ bearing pathogenic mutations (D202N and E200K). We also report that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP₉₀₋₂₃₁ cytotoxicity. Finally, by in silico structural analysis, we propose that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.[Abstract] [Full Text] [Related] [New Search]