These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries.
    Author: Kochová P, Kuncová J, Svíglerová J, Cimrman R, Miklíková M, Liška V, Tonar Z.
    Journal: Physiol Meas; 2012 Aug; 33(8):1335-51. PubMed ID: 22813960.
    Abstract:
    The main components responsible for the mechanical behavior of the arterial wall are collagen, elastin, and smooth muscle cells (SMCs) in the medial layer. We determined the structural and mechanical changes in porcine carotid arteries after administration of Triton® X-100, elastase, and collagenase using the inflation-deflation test. The arteries were intraluminarly pressurized from 0 to 200 mmHg, and the outer diameter of the artery was measured. The pressure-strain elastic modulus was determined based on the pressure/diameter ratio. The intima-media thickness, wall thickness, thickness of the tunica adventitia layer, and the area fractions of SMCs, elastin, and collagen within the arterial wall (A(A)(SMC/elastin/collagen, wall)) were measured using stereological methods. The relative changes in the relevant components of the treated samples were as follows: the decrease in A(A)(SMC, wall) after administration of Triton® X-100 was 11% ± 7%, the decrease in A(A)(elastin, wall) after administration of elastase was 40% ± 22%, and the decrease in A(A)(collagen, wall) after the application of collagenase was 51% ± 22%. The Triton® X-100 treatment led to a decrease in the SMC content that was associated with enlargement of the arterial wall (outer diameter) for pressures up to 120 mmHg, and with mechanical stiffening of the arterial wall at higher pressures. Elastase led to a decrease in the elastin content that was associated with enlargement of the arterial wall, but not with stiffening or softening. Collagenase led to a decrease in collagen content that was associated with a change in the stiffness of the arterial wall, although the exact contribution of mechanical loading and the duration of treatment (enlargement) could not be quantified.
    [Abstract] [Full Text] [Related] [New Search]