These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunolocalization of keratin-associated beta-proteins (beta-keratins) in scales of the reptiles Sphenodon punctatus indicates that different beta-proteins are present in beta- and alpha-layers. Author: Alibardi L. Journal: Tissue Cell; 2012 Dec; 44(6):378-84. PubMed ID: 22817772. Abstract: The present ultrastructural immunocytochemical study analyzes the localization of keratin-associated beta-proteins (beta-keratins) in the epidermis of the ancient reptile Sphenodon punctatus, a relict species adapted to mid-cold conditions. The epidermis comprises two main layers, indicated as beta- and alpha-keratin layers. The beta-layer contains small beta-proteins (beta-keratins) identified by using three different antibodies while the alpha-layer is poorly or not labeled for these proteins. Using other two antibodies directed against specific amino acid sequences identified in beta-proteins of lizard it results that a high-glycine beta-protein (HgG5) is specific for the beta-layer. Another antibody that recognizes glycine-cysteine medium-rich beta-proteins (HgGC10) immuno-stains beta- and alpha-layers. This pattern of distribution suggests that both beta- and alpha-layers contain beta-proteins of different types that associate and replace intermediate-filament alpha-keratins during the terminal differentiation of keratinocytes. Therefore the different epidermal layers of the epidermis in S. punctatus, characterized by a specific cytology, material properties and consistency appear to derive from the prevalent type of beta-proteins synthesized in each epidermal layer and not from the alternation between beta- and alpha-keratins. The present observations are discussed in comparison to previous results from lizard epidermis and indicate that beta-keratins correspond to keratin-associated proteins that through their internal beta-pleated region are capable to form filaments in addition to intermediate filaments keratins.[Abstract] [Full Text] [Related] [New Search]