These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of multiwall carbon nanotubes impregnated with 5-dodecylsalicylaldoxime for on-line copper preconcentration and determination in water samples by flame atomic absorption spectrometry.
    Author: Tobiasz A, Walas S, Soto Hernández A, Mrowiec H.
    Journal: Talanta; 2012 Jul 15; 96():89-95. PubMed ID: 22817933.
    Abstract:
    The paper presents application of multiwall carbon nanotubes (MWCNTs) modified with 5-dodecylsalicylaldoxime to copper(II) flow-injection on-line preconcentration and flame atomic absorption spectrometric (FAAS) determination. Two new sorbents were obtained by impregnation of MWCNTs with Cu(II)-LIX 622(®) complex, however in the first case modification was preceded by carbon wall activation via oxidization (Cu-LIX-CNT-A sorbent), and in the second one no surface activation was performed (Cu-LIX-CNT sorbent). It was found that effective leaching of initially introduced copper and Cu(II) retained in preconcentration process could be realized with the use 7% and 5% (v/v) nitric acid, for particular sorbents. Testing the influence of loading solution pH and rate of loading on sorption it was found out that optimal range of loading solution pH was about 4.5-6.3 for activated and 6.15-6.25 for non-activated CNT. Investigation of sorption kinetics showed that the process can be described by pseudo-second order reaction model. Sorption equilibrium conditions (90% sorption) for LIX-CNT-A and LIX-CNT were obtained after 8-15min, respectively and maximum sorption capacity for the new sorbents amounted to 18.1mgg(-1) and 31.6mgg(-1), respectively. For the examined sorbents enrichment factors increased with extension of loading time up to 180s: linearly for activated and non-linearly for non-activated MWCNTs. Influence of potential interferents such as Cd(II), Zn(II), Fe(III), Mg(II) and Ca(II) ions on copper(II) sorption on the new CNT materials was examined individually and with the use of 2(5-2) factorial design. The study revealed significant interference from iron, magnesium and calcium ions at relatively high concentrations. Applicability of the proposed sorbents was tested for Cu(II) determination in various kinds of water samples and the results were compared with those obtained with the use of ICP MS as a reference technique. Copper(II) determination in two certified reference materials: waste water (EU-H-3) and ground (ES-H-2) water was performed in order to assess trueness of the evaluated preconcentration procedures. Satisfactory values of relative errors were obtained for both procedures.
    [Abstract] [Full Text] [Related] [New Search]