These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sacrificial template-directed synthesis of mesoporous magnesium oxide architectures with superior performance for organic dye adsorption [corrected]. Author: Ai L, Yue H, Jiang J. Journal: Nanoscale; 2012 Sep 07; 4(17):5401-8. PubMed ID: 22825305. Abstract: Mesoporous MgO architectures were successfully synthesized by the direct thermal transformation of the sacrificial oxalate template. The as-prepared mesoporous architectures were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption techniques. The MgO architectures showed extraordinary adsorption capacity and rapid adsorption rate for removal of Congo red (CR) from water. The maximum adsorption capacity of the MgO architectures toward CR reached 689.7 mg g⁻¹, much higher than most of the previously reported hierarchical adsorbents. The CR removal process was found to obey the Langmuir adsorption model and its kinetics followed pseudo-second-order rate equation. The superior adsorption performance of the mesoporous MgO architectures could be attributed to the unique mesoporous structure, high specific surface area as well as strong electrostatic interaction.[Abstract] [Full Text] [Related] [New Search]