These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscarinic M4 receptors regulate GABAergic transmission in rat tuberomammillary nucleus neurons. Author: Nakamura M, Jang IS. Journal: Neuropharmacology; 2012 Nov; 63(6):936-44. PubMed ID: 22828639. Abstract: Histaminergic neurons within the tuberomammillary nucleus (TMN) play an important role in sleep-wakefulness regulation. Here, we report the muscarinic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in mechanically dissociated rat histaminergic neurons using a conventional whole-cell patch clamp technique. Muscarine, a nonselective muscarinic acetylcholine (mACh) receptor agonist, reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that muscarine acts presynaptically to decrease the probability of spontaneous GABA release. The muscarine action on GABAergic mIPSC frequency was completely blocked by atropine, a nonselective mACh receptor antagonist, and tropicamide, an M(4) receptor antagonist. The muscarine-induced decrease in mIPSC frequency was completely occluded in the presence of Cd(2+), a general voltage-dependent Ca(2+) channel blocker, or in a Ca(2+)-free external solution. However, pharmacological agents affecting adenylyl cyclase or G-protein coupled inwardly rectifying K(+) channel activity did not prevent the inhibitory action of muscarine on GABAergic mIPSCs. These results suggest that muscarine acts on M(4) receptors on GABAergic nerve terminals projecting to histaminergic neurons to inhibit spontaneous GABA release via the inhibition of Ca(2+) influx from the extracellular space. Muscarine also inhibited action potential-dependent GABA release by activating presynaptic M(4) receptors in more physiological conditions. The M(4) receptor-mediated modulation of GABAergic transmission onto TMN neurons may contribute to the regulation of sleep-wakefulness.[Abstract] [Full Text] [Related] [New Search]