These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quercetin protects macrophages from oxidized low-density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress-C/EBP homologous protein pathway. Author: Yao S, Sang H, Song G, Yang N, Liu Q, Zhang Y, Jiao P, Zong C, Qin S. Journal: Exp Biol Med (Maywood); 2012 Jul; 237(7):822-31. PubMed ID: 22829699. Abstract: Quercetin (QUE), a member of the bioflavonoid family, has been proposed to have antioxidative, anti-inflammatory and antihypertensive properties. This study was designed to investigate the protective effect of QUE on oxidized low-density lipoprotein (ox-LDL)-induced cytotoxicity in RAW264.7 macrophages and specifically the endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) pathway-mediated apoptosis. Our results showed that treatment with QUE (20, 40 and 80 μmol/L) significantly attenuated ox-LDL-induced cholesterol accumulation in macrophages and foam cell formation in a dose-dependent manner. Similar to tunicamycin (TM), a classical ER stress inducer, ox-LDL reduced cell viability and induced apoptosis in RAW264.7 macrophages. The cytotoxic effects of ox-LDL and TM were significantly inhibited by QUE treatment. Interestingly, we found that QUE also significantly suppressed the ox-LDL- and TM-induced activation of ER stress signaling events, including the phosphorylation of inositol-requiring enzyme 1 (IRE1), translocation of activating transcription factor 6 (ATF6) from the cytoplasm to the nucleus and upregulation of X-box-binding protein 1. In addition, exposure of RAW264.7 macrophages to ox-LDL or TM resulted in a significant increase in the expression of CHOP, a transcription factor regulated by IRE1 and ATF6 under conditions of ER stress, as well as a decrease in Bcl-2 transcript and protein concentrations. QUE blocked these effects in a dose-dependent manner. These data indicate that QUE can protect RAW264.7 cells from ox-LDL-induced apoptosis and that the mechanism at least partially involves its ability to inhibit the ER stress-CHOP signaling pathway.[Abstract] [Full Text] [Related] [New Search]