These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular identity, ontogeny, and cAMP modulation of the hyperpolarization-activated current in vestibular ganglion neurons. Author: Almanza A, Luis E, Mercado F, Vega R, Soto E. Journal: J Neurophysiol; 2012 Oct; 108(8):2264-75. PubMed ID: 22832570. Abstract: Properties, developmental regulation, and cAMP modulation of the hyperpolarization-activated current (I(h)) were investigated by the whole cell patch-clamp technique in vestibular ganglion neurons of the rat at two postnatal stages (P7-10 and P25-28). In addition, by RT-PCR and immunohistochemistry the identity and distribution of hyperpolarization-activated and cyclic nucleotide-gated channel (HCN) isoforms that generate I(h) were investigated. I(h) current density was larger in P25-28 than P7-10 rats, increasing 410% for small cells (<30 pF) and 200% for larger cells (>30 pF). The half-maximum activation voltage (V(1/2)) of I(h) was -102 mV in P7-10 rats and in P25-28 rats shifted 7 mV toward positive voltages. At both ages, intracellular cAMP increased I(h) current density, decreased its activation time constant (τ), and resulted in a rightward shift of V(1/2) by 9 mV. Perfusion of 8-BrcAMP increased I(h) amplitude and speed up its activation kinetics. I(h) was blocked by Cs(+), zatebradine, and ZD7288. As expected, these drugs also reduced the voltage sag caused with hyperpolarizing pulses and prevented the postpulse action potential generation without changes in the resting potential. RT-PCR analysis showed that HCN1 and HCN2 subunits were predominantly amplified in vestibular ganglia and end organs and HCN3 and HCN4 to a lesser extent. Immunohistochemistry showed that the four HCN subunits were differentially expressed (HCN1 > HCN2 > HCN3 ≥ HCN4) in ganglion slices and in cultured neurons at both P7-10 and P25-28 stages. Developmental changes shifted V(1/2) of I(h) closer to the resting membrane potential, increasing its functional role. Modulation of I(h) by cAMP-mediated signaling pathway constitutes a potentially relevant control mechanism for the modulation of afferent neuron discharge.[Abstract] [Full Text] [Related] [New Search]