These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells.
    Author: Marconett CN, Singhal AK, Sundar SN, Firestone GL.
    Journal: Mol Cell Endocrinol; 2012 Nov 05; 363(1-2):74-84. PubMed ID: 22835548.
    Abstract:
    We previously established that Indole-3-Carbinol (I3C), a natural hydrolysis product of glucobrassicin in cruciferous vegetables, arrests the proliferation of estrogen-dependent human breast cancer cells and induces protein degradation of Estrogen Receptor-alpha (ERα). We demonstrate in human MCF-7 breast cancer cells that I3C ablates expression of Insulin-like Growth Factor Receptor-1 (IGF1R) and Insulin Receptor Substrate-1 (IRS1), downstream effectors of the IGF1 signaling pathway. Exogenous ERα reversed the I3C mediated loss of IGF1R and IRS1 gene expression demonstrating that down-regulation of ERα is functionally linked to I3C control of IGF1R and IRS1 expression. I3C disrupted binding of endogenous ERα, but not Sp1, to ERE-Sp1 composite elements within the IGF1R/IRS1 promoters. Exogenous ERα abrogated, and combined expression of IGF1R and IRS1 attenuated, the I3C mediated cell cycle arrest. Therefore, I3C inhibits proliferation of estrogen-sensitive breast cancer cells through disruption of ERα-mediated transcription of cell signaling components within the IGF1 cascade.
    [Abstract] [Full Text] [Related] [New Search]