These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative study of Newtonian and non-Newtonian simulations of drug transport in a model drug-eluting stent. Author: Wang Z, Sun A, Fan Y, Deng X. Journal: Biorheology; 2012; 49(4):249-59. PubMed ID: 22836079. Abstract: To elucidate the difference between Newtonian and shear thinning non-Newtonian assumptions of blood in the analysis of DES drug delivery, we numerically simulated the local flow pattern and the concentration distribution of the drug at the lumen-tissue interface for a structurally simplified DES deployed in a curved segment of an artery under pulsatile blood flow conditions. The numerical results showed that when compared with the Newtonian model, the Carreau (shear thinning) model could lead to some differences in the luminal surface drug concentration in certain areas along the outer wall of the curved vessel. In most areas of the vessel, however, there were no significant differences between the 2 models. Particularly, no significant difference between the two models was found in terms of the area-averaged luminal surface drug concentration. Therefore, we believe that the shear thinning property of blood may play little roles in DES drug delivery. Nevertheless, before we draw the conclusion that Newtonian assumption of blood can be used to replace its non-Newtonian one for the numerical simulation of drug transport in the DES implanted coronary artery, other more complex mechanical properties of blood such as its thixotropic behavior should be tested.[Abstract] [Full Text] [Related] [New Search]