These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple-step model-experiment matching allows precise definition of dynamical leg parameters in human running. Author: Ludwig C, Grimmer S, Seyfarth A, Maus HM. Journal: J Biomech; 2012 Sep 21; 45(14):2472-5. PubMed ID: 22840490. Abstract: The spring-loaded inverted pendulum (SLIP) model is a well established model for describing bouncy gaits like human running. The notion of spring-like leg behavior has led many researchers to compute the corresponding parameters, predominantly stiffness, in various experimental setups and in various ways. However, different methods yield different results, making the comparison between studies difficult. Further, a model simulation with experimentally obtained leg parameters typically results in comparatively large differences between model and experimental center of mass trajectories. Here, we pursue the opposite approach which is calculating model parameters that allow reproduction of an experimental sequence of steps. In addition, to capture energy fluctuations, an extension of the SLIP (ESLIP) is required and presented. The excellent match of the models with the experiment validates the description of human running by the SLIP with the obtained parameters which we hence call dynamical leg parameters.[Abstract] [Full Text] [Related] [New Search]