These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor.
    Author: Wenga G, Jacques E, Salaün AC, Rogel R, Pichon L, Geneste F.
    Journal: Biosens Bioelectron; 2013 Feb 15; 40(1):141-6. PubMed ID: 22841443.
    Abstract:
    Currently, detection of DNA hybridization using fluorescence-based detection technique requires expensive optical systems and complex bioinformatics tools. Hence, the development of new low cost devices that enable direct and highly sensitive detection stimulates a lot of research efforts. Particularly, devices based on silicon nanowires are emerging as ultrasensitive electrical sensors for the direct detection of biological species thanks to their high surface to volume ratio. In this study, we propose innovative devices using step-gate polycrystalline silicon nanowire FET (poly-Si NW FETs), achieved with simple and low cost fabrication process, and used as ultrasensitive electronic sensor for DNA hybridization. The poly-SiNWs are synthesized using the sidewall spacer formation technique. The detailed fabrication procedure for a step-gate NWFET sensor is described in this paper. No-complementary and complementary DNA sequences were clearly discriminated and detection limit to 1 fM range is observed. This first result using this nano-device is promising for the development of low cost and ultrasensitive polysilicon nanowires based DNA sensors compatible with the CMOS technology.
    [Abstract] [Full Text] [Related] [New Search]