These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: BnC15 and BnATA20, the different putative components, control anther development in Brassica napus L.
    Author: Wan L, Hu Q, Hong D, Yang G.
    Journal: Gene; 2012 Oct 01; 507(1):9-19. PubMed ID: 22841791.
    Abstract:
    In Brassica napus, male fertility depends on proper cell differentiation in the anther. However, relatively little is known about the genes regulating anther cell differentiation and function. Here, we report two floral organ specific genes, BnC15 and BnATA20, derived from a B. napus two-line Rs1046A/B floral subtractive library. Although BnC15 and BnATA20 genes have a different expression pattern in anthers demonstrated by in situ hybridization and real-time PCR analysis, silencing of both genes in B. napus by antisense suppression resulted in pollen abortion after microspore release. Light and electron microscopy observation revealed the lack of plastoglobuli, lipid bodies and sporopollenin secreted from the tapetum leading to aberrations in exine sculpturing and the formation of a pollen coat. In addition, the microspores were squeezed to the irregular shape in the locule in the end. As shown by gene expression analysis in transgenic plants and the comparison of anther development between bnc15 or bnata20 mutants and Rs1046A, BnC15 and BnATA20 were positively regulated downstream of Rf gene controlling the fertility of Rs1046B in the same pathway. The results support the hypothesis that BnC15 and BnATA20 are crucial components of a genetic network that controls tapetum development and exine sculpturing.
    [Abstract] [Full Text] [Related] [New Search]