These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of Crotalaria spp., Indigofera spp., Erythrina brucei and Glycine max growing in Ethiopia.
    Author: Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K.
    Journal: Mol Phylogenet Evol; 2012 Nov; 65(2):595-609. PubMed ID: 22842091.
    Abstract:
    Ethiopian Bradyrhizobium strains isolated from root nodules of Crotalaria spp., Indigofera spp., Erythina brucei and soybean (Glycine max) represented genetically diverse phylogenetic groups of the genus Bradyrhizobium. Strains were characterized using the amplified fragment length polymorphism fingerprinting technique (AFLP) and multilocus sequence analysis (MLSA) of core and symbiotic genes. Based on phylogenetic analyses of concatenated recA-glnII-rpoB-16S rRNA genes sequences, Bradyrhizobium strains were distributed into fifteen phylogenetic groups under B. japonicum and B. elkanii super clades. Some of the isolates belonged to the species B. yuanmingense, B. elkanii and B. japonicum type I. However, the majority of the isolates represented unnamed Bradyrhizobium genospecies and of these, two unique lineages that most likely represent novel Bradyrhizobium species were identified among Ethiopian strains. The nodulation nodA gene sequence analysis revealed that all Ethiopian Bradyrhizobium isolates belonged to nodA sub-clade III.3. Strains were further classified into 14 groups together with strains from Africa, as well as some originating from the other tropical and subtropics regions. Strains were also clustered into 14 groups in nodY/K phylogeny similarly to the nodA tree. The nifH phylogenies of the Ethiopian Bradyrhizobium were generally also congruent with the nodA gene phylogeny, supporting the monophyletic origin of the symbiotic genes in Bradyrhizobium. The phylogenies of nodA and nifH genes were also partially congruent with that inferred from the concatenated core genes sequences, reflecting that the strains obtained their symbiotic genes vertically from their ancestor as well as horizontally from more distantly related Bradyrhizobium species.
    [Abstract] [Full Text] [Related] [New Search]