These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low-dose sublingual ketamine does not modulate experimentally induced mechanical hyperalgesia in healthy subjects. Author: Slater H, Graven-Nielsen T, Wright A, Schug SA. Journal: Pain Med; 2012 Sep; 13(9):1235-46. PubMed ID: 22844979. Abstract: OBJECTIVE: Musculoskeletal pain has been associated with N-methyl-d-aspartate (NMDA) receptor-mediated mechanisms. This randomized controlled trial (RCT) investigated the effect of the NMDA receptor antagonist ketamine (25 mg sublingually) on modulating experimental muscle pain. DESIGN: Two groups (N = 11/group) of age- and sex-matched healthy subjects performed eccentric exercise using the nondominant arm wrist extensors (time 0) to induce muscle soreness 24 hours later (time 1). INTERVENTION: Immediately prior to exercise, subjects were administered either a 25 mg ketamine lozenge or a placebo. At time 1, experimental muscle pain was augmented by injection of hypertonic saline into the extensor carpi radialis brevis (ECRB) muscle of the exercised arm. OUTCOME MEASURES: Pressure pain thresholds (PPTs), muscle soreness, muscle pain intensity (electronic visual analog scale [VAS]), and maximal wrist extension force were assessed at time 0 (pre- and postexercise) and at time 1 (pre-, during, and post saline-induced pain). RESULTS: Regardless of group, PPT was reduced at ECRB (P < 0.021) and at the common extensor origin (P < 0.034) at time 1 preinjection compared with time 0 pre-exercise. At time 1, elevated levels of muscle soreness and force attenuation were similar between groups compared with time 0 pre-exercise (P < 0.0001), and similar hypertonic saline-induced pain areas and pain intensity profiles were evident. CONCLUSION: In comparison with placebo, a single low-dose sublingual pharmacological intervention targeting the processes of sensitization via antagonism of NMDA receptors did not modulate the effects of acute experimentally induced mechanical hyperalgesia, suggesting a higher dose or repeat doses may be required.[Abstract] [Full Text] [Related] [New Search]